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Abstract

We consider learning with a set of likelihoods when the learner’s set is misspecified. We study

welfare implications of entertaining a misspecified set by focusing on the limit point of learning

and the associated best-responding policy. Building on such policies, we define consistency

requirements for sets of likelihoods that a utility-maximizing agent would find desirable. We

characterize a class of decision problems for which exponential families of likelihoods—with

payoff-relevant moments as sufficient statistics—exist that satisfy our consistency requirements

therefore guaranteeing the asymptotic implementation of optimal policies irrespective of the

data generating process.
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1 Introduction

Most economic models aim to capture a simplified and crude approximation of the complex envi-

ronment they wish to describe. The models are misspecified. Economic agents use these models

to interpret observed signals and make decisions given those interpretations. While parsimonious

models might have clear benefits for learning in finite samples, when data are abundant it is not

obvious if and when using misspecified models for learning has a detrimental impact on the quality

of decisions.

To investigate this problem we consider a decision maker (DM) learning about the distribution P of

an exogenous stochastic process with the aim of uncovering features of the data generating process

(DGP) that are instrumental for her decision problem. While we adopt a Bayesian framework for

simplicity our results apply to other likelihood based methods as well. Bayesian learning entails

specifying a family of likelihoods, M, accompanied with a (strictly positive) prior distribution that

gets updated according to Bayes’ rule as new observations from P arrive. This updating process

induces a sequence of posterior distributions over M that, under well-known regularity conditions,

will asymptotically concentrate on the likelihood QKL
M,P ∈ M that minimizes the Kullback-Leibler

divergence from P . Bayesian decision making entails choosing a sequence of policies defined as best

response functions with respect to elements of the sequence of posteriors, using the DM’s preference

as a benchmark to what “best” means. The limit point aM,P of this sequence of policies is the best

response with respect to QKL
M,P . This paper investigates how the set of entertained likelihoods, M,

can influence the DM’s welfare through its impact on the pair of limit points (QKL
M,P , aM,P ) when it

cannot be guaranteed that P ∈ M, that is, that M is correctly specified. We consider parametric

families of M while allowing the DGP to be nonparametric.

We define two properties of M that provide uniform performance guarantees with respect to a

class P of potential data generating processes.1 The key building block of our definitions is a

preference-based performance measure of likelihoods: the long-run average payoff of likelihood

Q ∈ P is defined as the expected utility under P induced by a policy that is a best response with

1This class can be large. So large that the convergence of posteriors cannot be guaranteed if M = P (see e.g.
Diaconis and Freedman (1986)). An illustrative example that we use throughout the paper is the class of i.i.d.
distributions.

2



respect to Q.2 We use this measure to define an undominatedness property of M, that we call

misspecification-proofness, requiring that, irrespective of which P ∈ P generates the data, there

is no other set of likelihoods that would asymptotically lead to a likelihood with higher long-run

average payoff. This is a demanding property that captures one of the most desirable features

of correctly specified models. We also introduce a weaker performance property of M, that we

call local payoff-optimality, requiring that, irrespective of which P ∈ P generates the data, the

likelihood that the M-implied posteriors asymptotically concentrate on leads to the highest long-

run average payoff within M. Recognizing that the actual data generating process is unknown, we

argue that our P -independent properties are reasonably required from any set of likelihoods that

the DM entertains.3

We show that generic sets of likelihoods do not satisfy either of our properties under Bayesian

learning. This means that a misspecified set M can cause the learner to implement a policy

function that appears suboptimal even relative to the entertained set, thereby violating local payoff-

optimality. The source of this suboptimality is the misalignment of two implicit loss functions

pertinent to Bayesian decision making: one for learning (KL-divergence), and one for decision

making (utility function). Intuitively, once a set of likelihoods is specified, its elements implicitly

define the statistical moments of P that Bayesian learning will focus on. If those moments are

different from the payoff-relevant moments that determine the DM’s policy function, learning can

focus on “wrong” features of the environment. Clearly, under correct specification the misalignment

of loss functions is inconsequential, but it can be of first order importance when misspecification is

present.

We demonstrate these concepts through a standard consumption-saving problem. After diagnosing

the source of suboptimality, we identify a class of decision problems, for which we can construct sets

of likelihoods that are both misspecification-proof and locally-payoff-optimal. The key idea is to

tailor the misspecified set to preferences. In particular, we recommend constructing an exponential

family of likelihoods by using the DM’s vector of payoff-relevant moments as sufficient statistics.

These moments are derived from the underlying decision problem and thus are determined by

2This is meant to capture the idea that learning matters only indirectly, through implementing a given policy.
3Similar to the notion of admissibility, the strength of our properties is to help abandoning undesirable strategies.
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preferences. By using our exponential family of likelihoods, the decision maker ensures that she

learns about the “right” features of the data generating process.

We deviate from the subjectivist Bayesian view by assuming that the DM treats her likelihoods

as instruments for choosing good policies, rather than as indisputable parts of preferences that

provide psychological value by themselves. Such an assumption is necessary for any reasonable

form of assessment of models that are misspecified. If we were to take the subjectivist view, the

DM would always do her best according to the wrong model her decisions are based on. In order

to avoid the conclusion of this circular argument, we follow Blume et al. (2018) and take the

perspective of an outside observer that allows us to compare potentially misspecified priors based

on their asymptotic implications.

Our introduced properties of M are meant to capture these asymptotic implications without con-

sidering the transition. Therefore, assuming that the standard regularity conditions are satisfied,

they are restricted to the support of the prior ignoring the specific weighting. As such, while we use

Bayesian terminology throughout the paper, our findings are applicable to any converging learning

rule such that the entertained hypotheses are representable with probability distributions over the

observables and such that the likelihood of each hypothesis is assessed in light of the data.4

Our results illustrate that the set of likelihoods that the decision maker entertains should be tailored

to the DM’s objective as opposed to the environment. Even if the data generating process is highly

complex in the statistical sense, there are decision problems for which a simple misspecified set can

implement the optimal policy if it is targeted at the appropriate features of the environment. Our

results can thus be viewed as a recipe for model building given by a preference-driven coarsening

of the state space.

4This includes both Bayesian learning and anticipated utility learning (see Kreps (1998)) accompanied with some
frequentist procedures (e.g. MLE). On the other hand, we do not consider active learning. That is, we assume that
the implemented policy function does not affect the information that the DM observes or the probability distribution
that she wants to learn about.
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1.1 Related Literature

Two key features of our analysis are: (i) we take an outside observer’s perspective by considering

standard Bayesian decision making but assessing the set of likelihoods entertained by the DM

according to their long-run implications under some “objective reality”, and (ii) we allow the set

of likelihoods (prior support) to be misspecified.

While Bayesian learning occupies a prominent place in the economics literature, most papers focus

on the case of correct specification. In their classic paper, Bray and Kreps (1987) argue that this

benchmark is too “sterile” and call for models that “have in place some level of inconsistency with

reality”. Important examples of such models are Nyarko (1991) and Fudenberg et al. (2017).5

Similar to us, these papers analyze Bayesian learning under the assumption that the decision

maker’s prior is misspecified. Nevertheless, instead of assessing the usefulness of these priors as we

do, these papers focus on the non-trivial dynamics of beliefs that may arise when learning is active.

The problem of misspecification has a rich history in the econometrics and statistics literature.

In his seminal paper, Berk (1966) showed that Bayesian learning about a parameter from a series

of exchangeable signals asymptotically concentrates on the parameter values for which the KL-

divergence of the DGP with respect to the entertained likelihoods is minimal. More recently, Shalizi

(2009) arrives at the same conclusion in a much more general setting. Following the frequentist

tradition, White (1996) provides a thorough analysis of maximum-likelihood techniques when the

model is misspecified.6 In this case, the KL-divergence minimizing parameter, θKL, is typically

called the pseudo-true parameter. By studying large sample properties of Bayesian inference about

θKL, Müller (2013) shows that one can reduce the Bayes estimator’s expected loss (under the

DGP) by replacing the original posterior with an artificial normal posterior centered at θKL with

the sandwich covariance matrix. Although similar, our approach is different in the sense that our

decision maker is not interested in P or θKL per se. Statistical closeness is important for her only

to the extent that it helps to make better decisions.

As for point (i), an example is Blume et al. (2018) who use an objective welfare criterion—similar

5See also Esponda and Pouzo (2016).
6Ideas similar to the justification that we give in section 4 can be spotted in various chapters of White (1996).
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in spirit to ours—to rank alternative market structures in the presence of belief heterogeneity

(without learning). In addition, measuring the implications of learning relative to the DGP is

of a similar flavor to the question of survival in financial markets analyzed by Blume and Easley

(2006). We illustrate that a learner’s value function can carry invaluable information about the

relative usefulness of different likelihoods when the prior is misspecified. This echoes the literature

on max-min expected utility that breaks a key feature of Bayesian decision making: the separation

of inference and control.7 This literature—in contrast to the Bayesian decision rule we use—alters

the manner in which optimal policies are chosen: instead of trying to maximize expected utility

under a single distribution, a max-min decision maker seeks policies that work well (not necessarily

optimally) under a whole set of reasonable distributions. Attempts to marry such behavior with

learning can be found in Hansen and Sargent (2007), Klibanoff et al. (2009), and Epstein and

Schneider (2007).

The observation that misaligned loss functions—one for estimation, and one for evaluation—can

lead to undesirable outcomes under misspecification has long been recognized in the forecasting

literature. In particular, Granger and Newbold (1973) argued that if misspecification is a serious

concern and one believes that a particular loss function (e.g. mean squared error) should be used

to evaluate forecasts, then the same loss function should also be used to estimate the model param-

eters.8 Our recommendation in section 4 is similar in spirit and can be viewed as a generalization

and a tractable operationalization of this idea.

Our recommendation also resembles the idea of Gibbs posteriors advocated by Jiang and Tanner

(2008) and Bissiri et al. (2016). Instead of trying to model the DGP directly, this approach starts

with some statistics of interest, θ, accompanied with a corresponding loss function, ℓ(θ, x), such

that θ minimizes the expected ℓ(θ, x) under the DGP. It then proposes to use exp (−ℓ(θ, x)) as a

quasi-likelihood for Bayesian inference. In our case, the statistics θ can be viewed as our vector of

payoff-relevant moments. In this sense, the main difference relative to our analysis is that we do not

take these moments as given but derive them from primitives (preferences and market structure)

of an economic decision problem. Similar comments apply to the so called focused information

7In the Bayesian model, optimal inference about P is independent of u. See Hansen and Sargent (2018).
8See also the loss-function based proposals of Schorfheide (2001) and Geweke and Amisano (2012).
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criterion developed by Claeskens and Hjort (2003). It is a model selection tool that evaluates

candidate models based on their ability to efficiently estimate a particular parameter of interest,

instead of comparing their overall fit.

The rest of the paper is structured as follows. Section 2 introduces our consistency requirements

for misspecification-proof learning. In Section 3, we demonstrate how misspecification can lead to

suboptimal long-run behavior through an example. Section 4 presents our recommendation that

can be used to resolve this suboptimality in some cases. Section 5 concludes.

2 General framework and notation

The environment is described by a probability space (Ω,F , P ) such that a strictly stationary and

ergodic observable state vector X takes values in the measurable space (X ,Ξ) with distribution

P . Alternative descriptions of the environment can be obtained by replacing P with some other

strictly stationary and ergodic distribution. Loosely, we use P to denote the set of distributions

over X that the DM deems to be plausible for the specific problem at hand. A typical case would

be when P imposes exchangeability but no further restrictions.

The decision maker chooses a policy function, a : X → C, that assigns a particular action from some

choice set C to every realization x of the state vector X. Let A denote the collection of measurable

policy functions that the DM could implement. Payoffs are described by the period utility function,

u : C × X → R, and possibly depend on the state. To describe the decision maker’s objective, we

introduce a functional, U : A×P → R, defined as,

U(a,Q) :=

∫
X
u(a(x), x)dQ(x). (1)

U defines the expected payoff induced by a policy function a ∈ A under a distribution Q ∈ P.

Ideally, the decision maker would want to implement a policy function a∗ that maximizes the

expected payoff under P ,

a∗ ∈ argmax
a∈A

U(a, P ). (2)
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Since we assume that the environment is strictly stationary and ergodic, U(·, P ) is equal to the

average payoff that the decision maker realizes in the long-run.9 To distinguish this notion from

expected payoff under arbitrary Q ∈ P, we will henceforth call U(·, P ) the decision maker’s long-run

average payoff.

However, P is unknown, so the decision maker has to solve an alternative problem having objective

U(·, Q) in which P is replaced by some approximating distribution Q. To this end, she entertains

a set of likelihoods M, i.e., a family of strictly stationary and ergodic probability distributions

Qθ ∈ P, each indexed by a finite parameter vector θ,

M := {Qθ : θ ∈ Θ} , where Θ ⊆ Rp. (3)

We are interested in situations in which there is no guarantee that M is correctly specified, i.e.,

that P ∈ M. We call the set M misspecified if P /∈ M.

Initialized with some prior distribution over M, Bayes’ rule induces a sequence of posteriors that

summarize the decision maker’s best guesses for P at every point in time after the available data

is taken into account. It is well known that under certain regularity conditions (Shalizi, 2009)

the sequence of posteriors will eventually concentrate on the likelihoods in M that minimize the

Kullback-Leibler (KL) divergence from the data generating process,10

QKL
M,P := argmin

θ∈Θ
DKL (P ∥ Qθ) . (4)

In other words, after observing an infinite sequence of signals, Bayes’ rule concentrates on a distri-

bution from QKL
M,P as the best approximation of P . For ease of notation we consider situations in

which the set defined in (4) is a singleton and denote the single KL divergence minimizer as QKL
M,P .

9For a Ξ-measurable policy a, such that the function ū : x 7→ u(a(x), x) is P -integrable, the ergodic theorem
implies

U(a, P )
a.s.
= lim

t→∞

1

t

t−1∑
k=0

ū
(
Tkx

)
= lim
β↗1

(1− β)

∞∑
k=0

βkū
(
Tkx

)
where T : X → X is the ergodic, measure-preserving shift operator on (Ω,F , P ). The last equality uses the Abel
summation formula to illustrate that U(·, P ) can be also viewed as the zero-discounting-limit of the utility of someone
who knows P .

10The KL divergence is DKL(P ∥ Q) =
∫
log p(x)

q(x)
dP (x) =

∫
log p(x)dP (x)−

∫
log q(x)dP (x).
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Our results can be readily extended to the general case by considering all elements of QKL
M,P . The

KL-divergence minimizing likelihood has interesting information theoretic interpretations, but it

is not obvious what its properties are in terms of long-run average payoff: the quantity that the

decision maker ultimately cares about.

In order to investigate the payoff-relevant properties we define a performance measure of different

likelihoods in terms of the long-run average payoff of the policy function they induce. Correspond-

ingly, a crucial component of this object is the best response function b : P → A, defined as11,12

b(Q) ∈ argmax
a∈A

U(a,Q). (5)

Our performance measure of likelihood Q combines b with the expected payoff function under P :

U (b(Q), P ) . (6)

This gives the realized long-run average payoff induced by an arbitrary likelihood Q. By using P to

evaluate the performance of Q, we effectively take the perspective of an outside observer and intend

to capture the idea that learning influences the decision maker’s welfare only indirectly through

its induced policy functions.13 While we find it instructive, this notion suffers from the fact that

it hinges on the unknown data generating process. Nevertheless, it can be used to construct a

P -independent property of M.

Definition 1 (Misspecification-proof M).

Consider a decision problem characterized by the triplet (P,A, u). The family of likelihoods M ⊆ P

is misspecification-proof with respect to (P,A, u), if there exists no M′ ⊆ P, such that

U
(
b
(
QKL

M′,P

)
, P

)
≥ U

(
b
(
QKL

M,P

)
, P

)
∀P ∈ P,

with strict inequality for some P ∈ P.

11Considering only learning rules that converge to a single likelihood asymptotically, we can determine the best-
responding functions without having to consider mixture distributions.

12While potentially there could be a set of best-responding policy functions, for ease of exposition, we assume that
the best-responding policy function is unique. Our results can be readily extended to the set-valued case.

13The standard Bayesian approach would use U (b(Q), Q) to evaluate the implications of Q.
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Definition 1 describes an asymptotic performance property of a family of likelihoods M relative

to a specific decision problem. Being misspecification-proof guarantees that there is no other

(potentially misspecified) set of likelihoods that provides uniformly better asymptotic performance

over the entire set P of potential data generating processes.14 Intuitively, a decision maker with

an objective (2), fearing misspecification, would find this property desirable.

However, misspecification-proofness is an admittedly demanding property, as it is defined globally

in relation to all families of likelihoods. A related, but significantly weaker, performance property

can be defined in a local manner, that is, conditionally on the set M:15

Definition 2 (Locally-payoff-optimal M).

Consider a decision problem characterized by the triplet (P,A, u). The family of likelihoods M ⊆ P

is locally-payoff-optimal with respect to (P,A, u), if for all P ∈ P, there exists no Q′ ∈ M, such

that,

U
(
b
(
Q′) , P ) > U

(
b
(
QKL

M,P

)
, P

)
.

Local payoff-optimality requires that the likelihood QKL
M,P , that the Bayesian posterior asymptot-

ically concentrates on, generates the highest long-run average payoff within the set M. In this

sense, if there is no other likelihood within the entertained set M with a higher long-run average

payoff, Bayesian learning is successful in maximizing the unknown objective (2) at least over the

entertained set M. Essentially, this amounts to asymptotically vanishing regret relative to the set

of policies that can be derived as a best-response to some likelihood in M.

While there are many trivial sets of likelihoods that are locally payoff-optimal—such as any

singleton—not satisfying this property is symptomatic of a deeper issue which underlies the vi-

olation of misspecification-proofness. This issue is the incompatibility of two loss functions relevant

to the decision problem at hand: one governing the decision maker’s learning, and the other gov-

erning her decisions.

14The concept is akin to undominatedness in game theory. In our context, the decision maker choosing among
sets of likelihoods M plays against Nature whose action space is the set P of potential data generating processes.

15This property is related to the loss-function-based consistency notion typically used in the statistical learning
theory literature (see Vapnik (1995)).
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To shed light on the source of this problem, we construct a preference-based similarity measure

and contrast it with the analogous KL-divergence DKL, that captures statistical similarity. In

particular, by normalizing U (b(Q), P ) we define DU : P × P → R+ as

DU(P ∥ Q) := U (b(P ), P )− U (b(Q), P ) . (7)

For completeness, we denote the likelihoods that yield the highest long-run average payoff in M by

QU
M,P := argmin

θ∈Θ
DU (P ∥ Qθ) . (8)

We can use this set to rephrase local payoff-optimality of M as QKL
M,P ⊆ QU

M,P for all P ∈ P.

For fixed P , both DKL and DU attain their global minima (zero) at Q = P . Nevertheless, as

opposed to DKL, DU is not a divergence, because it can also take zero values at Q ̸= P .16 This

suggests that in principle the two measures DKL and DU can induce quite different level curves

over the space of likelihoods. In the following sections we further explore the implications of this

difference.

In particular, using the two performance properties introduced in Definition 1 and 2, section 3

presents an example that demonstrates that under Bayesian learning generic sets of likelihoods fail

to satisfy both local payoff-optimality and misspecification-proofness. While a priori our properties

might appear so strong that only correctly specified families of likelihoods could satisfy them, in

section 4 we characterize a class of decision problems for which it is possible (and straightforward)

to construct a set M with P /∈ M that are both misspecification-proof and locally-payoff-optimal.

3 Illustrative example

The following example illustrates that arbitrary sets of likelihoods coupled with Bayes learn-

ing might fail to satisfy both local payoff-optimality and misspecification-proofness. Consider a

16In fact, this property is a key feature of our example in section 3. Moreover, we will provide conditions under
which certain likelihoods Q and the data generating process P can share all “payoff-relevant” moments (DU(P ∥ Q) =
0), but otherwise differ in terms of their “statistical” moments (DKL(P ∥ Q) ̸= 0 and so Q ̸= P ).
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consumption-saving problem with a risk-averse agent whose preferences are recursive of the Ep-

stein and Zin (1989) type. Let γ > 0 be a coefficient of relative risk aversion for atemporal wealth

gambles, ψ > 0 be a parameter that governs attitude toward substituting goods over time, and

β be the agent’s discount factor. At the beginning of every period, she observes realization x of

the stochastic gross return X on her financial wealth. Suppose that the reference set P includes

distributions asserting that every period X is drawn i.i.d. from some unknown distribution P ∈ P.

The best response function is obtained by solving the Bellman equation for any distribution Q ∈ P,

V (w) = sup
c

(1− β)
c1−ψ

1− ψ
+ βEQ

[
V (w′)

1−γ
1−ψ

] 1−ψ
1−γ

(9)

s.t. w′ = x(w − c), (10)

where V is the agent’s value function, c denotes her consumption, and w′ is her financial wealth

after realizing next period return x. For a given Q, the above functional equation can be solved

for the optimal consumption policy by using standard recursive techniques:17

b(Q) = w

[
1−

(
βEQ

[
X1−γ] 1−ψ

1−γ

) 1
ψ

]
. (11)

The specific distribution Q affects the best action only through the implied risk-adjusted expected

return m(Q) := EQ
[
X1−γ]; a particular “perceived moment” of the interest rate process. The fact

that we are able to summarize relevant features of the interest rate process with finite moments, m,

permits an intuitive characterization of our preference-based measure, DU, expressing the reduction

in long-run average payoff owing to using Q instead of P .

Lemma 1. If two distributions Q, Q′ are such that m(Q) = m(Q′), they induce the same policy

functions so that b(Q) = b(Q′) and DU (P ∥ Q) = DU (P ∥ Q′).

As for the entertained set of likelihoods, assume that the agent uses likelihoods that describe X as

being i.i.d. lognormal parameterized by θ =
(
µ, σ2

)
denoted by M. Lemma 1 implies that if there

is a Qθ ∈ M such that m(Qθ) = m(P ), then the agent is able to implement the action that is the

17Interior solutions require βEQ
[
X1−γ] 1−ψ

1−γ < 1, which is a natural restriction on the discounted risk-adjusted
return.
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best response with respect to P , i.e., DU(P ∥ Qθ) = 0, even if all of her likelihoods are wrong. In

fact, there are many lognormal distributions with this property.

In principle, the payoff-relevant moment EP [X1−γ ] becomes known asymptotically irrespective of

which P ∈ P generates the data. This does not mean, however, that this is the moment that

Bayes’ law focuses on to find the likelihood in M that minimizes the KL-divergence from P . In

fact, asymptotically Bayes learning is converging to θ minimizing EP [− log qθ], where qθ denotes

the density of Qθ with respect to the Lebesgue measure. Given that the entertained likelihoods

in M are lognormals the minimizer matches the first- and second moments of the log-transformed

state variable.

One can immediately see a misalignment: while a key component of the agent’s policy function

is the risk-adjusted expected return, Bayesian learning with lognormal likelihoods aims to match

the mean and variance of logX. An immediate consequence of this misalignment is that M is

neither locally-payoff-optimal, nor misspecifiction-proof. Although the specific P is irrelevant for

this conclusion, further insight can be gained by looking at a particular example with P /∈ M.

Suppose that P is such that logX is distributed as a two-component mixture normal distribution.

The left panel of Figure 1 depicts the density of the assumed data generating process (black solid

line) with a long left tail capturing rare but disastrous return realizations. The other densities

represent lognormal densities that are closest to this data generating process according to DKL and

DU. While the blue dash-dotted distribution, used by the decision maker, matches statistical aspects

of the black solid line better, the green dashed densities induce higher long-run average payoff,

because they are associated with the same risk-adjusted expected return as the black distribution

P .

To shed more light on the suboptimality of a lognormal M, the right panel of Figure 1 depicts two

sets of level curves corresponding to the projections of DKL and DU on M, respectively. Lognormal

distributions on the ellipses have equal KL-divergence relative to P , while the blue straight lines

show distributions with equal long-run average payoff. Clearly, the two sets of level curves exhibit

strikingly different geometries. This difference emerges from the properties of DKL and DU. While

the level curves of DU are influenced by the preference parameter γ, the iso-entropies of DKL depend

13
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Figure 1: Left: Densities of the data generating process along with best approximations within
M according to DKL and DU. Dashed lines show lognormal densities that imply risk-adjusted
expected return of EP [X1−γ ]. Right: Indifference curves over M according to DKL and DU. The
dot θKL :=

(
µKL, σ

2
KL

)
denotes the KL-divergence minimizing lognormal distribution. The dashed

line represents distributions Q with DU(P ∥ Q) = 0.

primarily on the set M.

4 Misspecification-proof learning

The central message of our example is that if the statistical and payoff-relevant aspects of M are

not aligned, learning with misspecified likelihoods can lead to suboptimal policies. The problem

with an arbitrary set M is that KL-divergence might match features of the environment that are

irrelevant to the optimal policy function, a∗. We show now that this outcome is not inevitable:

under certain conditions, constructing sets of likelihoods that are both misspecification-proof and

locally-payoff-optimal is feasible. As we saw before, Bayes rule designates KL-divergence as an

implicit loss function for learning. While taking this loss function as given, we can choose M so

that DKL focuses on payoff-relevant features of the environment. This insight can be generalized

and serve as a guideline for specifying M in situations in which misspecification is an issue.

Assumption 1 (Moment-dependent policy function).

For a given utility function, u, suppose that the optimal policy function (relative to P) can be
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expressed as a function of finitely many moments of the data generating process. That is, there

exist functions Tu : X → Rd, and gu : Rd → A, such that for any Q ∈ P the best-responding policy

is defined as,

b(Q) = gu

(
m(Q;Tu)

)
, (12)

with m(Q;Tu) := EQ [Tu(X)] representing the vector of payoff-relevant moments.

Decision problems that satisfy Assumption 1 possess two salient features. One concerns the inter-

action between the decision maker and her environment and it implicitly requires that the DM’s

actions do not affect the data generating process itself. This property excludes active learning or

bandit problems. The other feature concerns the statistical complexity of the decision problem

and it requires a degree of simplicity in terms of welfare-relevant characteristics of the DGP. This

simple class nonetheless includes a large class of decision problems. For example, every non-active

learning problems with a finite policy space satisfies Assumption 1.18 Moreover, as seen by the

example in section 3, there are various decision problems with an infinite policy space that are

“simple enough” to satisfy Assumption 1. In that case, Assumption 1 requires limited interaction

between implementable policies and the state vector. Any decision problem characterized by a

differentiable utility function that can be written in the form u(a(x), x) = ⟨f(a), Tu(x)⟩ for some

function f(a) ∈ Rd also satisfies Assumption 1. This class includes quadratic utility functions,

isoelastic utility functions, and many others.

The next proposition states that for learning problems that satisfy Assumption 1 one can construct

sets of likelihoods that are both misspecification-proof and locally-payoff-optimal. In this sense

concerns about misspecification should largely depend on the utility function characterizing the

decision problem as opposed to the potential complexity of the data generating process.

Proposition 1.

Under Assumption 1, the exponential family of likelihoods defined by the finite sufficient statistics

18Enumerating policies as A = {a1, . . . , aN} we can define the payoff-relevant statistics as,

Tu(x) =

 u(a1(x), x)− u(a2(x), x)
...

u(aN−1(x), x)− u(aN (x), x)

 ∈ RN−1. (13)
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Tu,
19

M =
{
qθ(x) = hu(x) exp {θ · Tu(x)−Au(θ)} : θ ∈ Θ ⊆ Rd

}
, (14)

for some hu : X → R+, where Au(θ) is the cumulant function, is both misspecification-proof and

locally-payoff-optimal.

Proposition 1 follows from the tractable relationship between exponential families and their finite

sufficient statistics that we expand on in Appendix A. The KL-divergence minimizing distribution

within M is characterized by,

EQKL
M,P

[Tu(X)] = EP [Tu(X)], (15)

so that likelihood-based learning coincides with the method of moments in the sense that the

KL-divergence minimizing likelihood exactly matches the payoff-relevant moments of the data

generating process. In the limit the decision maker implements the policy function b
(
QKL

M,P

)
,

which—following the logic in Lemma 1—leads to the same long-run average payoff as a∗ = b (P ).

The moral of Proposition 1 is that even if the environment described by the underlying DGP is

complex in the statistical sense—i.e. infinite dimensional—the relevant complexity of the learner’s

problem is defined through her objective and reflects the properties of u. If the purpose of learning

is to aide decisions, the learner should select her likelihoods Q ∈ M based on their ability to capture

features of the environment that matter for good decisions. In this sense, we treat the DM’s set

M as an instrument for making decisions rather than an indisputable part of preferences. Given

that the environment’s statistical complexity can seriously limit the ability to learn, we advocate

calibrating M not to the intricacies of the “true” environment but to features pertinent to making

good decisions.

In this sense our result can also be viewed as a recommendation for constructing the relevant state

space in a given decision problem. As in our example, considering the whole set P as the state space

would necessitate the use of non-parametric models. However, this turns out to be unnecessary

if one can partition P into parsimonious equivalence classes by means of the inverse-image of the

19For ease of notation we define the exponential family through density functions. qθ is the density of Qθ with
respect to the Lebesgue measure. We use the canonical parametrization.
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Figure 2: Similarity measures DKL and DU over M. Vertical dotted lines represent the KL-
divergence minimizing parameters. Left panel shows the case when M includes lognormal distri-
butions with fixed σ2 = σ2KL so that the set is indexed only by µ. Middle and right panels depict
cases when the recommended set Mγ in (16) is used with different degrees of risk aversion.

best response function.20 In this scenario, states can be defined through moments of payoff-relevant

statistics much like in the case of method of moments approaches.

Example revisited

To see how to apply the introduced concepts, we revisit the consumption-saving problem of section

3. Recall that we identified the risk-adjusted expected return as the only payoff-relevant moment of

X, therefore, Assumption 1 is satisfied and misspecification-proof learning is feasible. The sufficient

statistic can be written as

Tu(x) := x1−γ ⇒ m(Q;Tu) = EQ [Tu(X)] .

Moreover, using standard integration by substitution logic,21 it is straightforward to show that

Au(θ) := − log (θ(1− γ)) and hu(x) := x−γ .

20Using the introduced notation the state space is defined as
{
b−1(a) ⊂ P : a ∈ A

}
.

21For simplicity, we assume γ > 1, so that θ < 0 is required for qθ to be a probability density function.

17



Therefore, our recommended set of (misspecified) likelihoods is,

Mγ :=
{
qθ(x) = x−γ exp

{
θx1−γ + log(θ(1− γ))

}
: θ < 0, x > 0

}
, (16)

where the γ-index emphasizes the prior support’s dependence on the decision maker’s risk aver-

sion. Figure 2 illustrates how Mγ renders the implied information geometry aligned with the

utility geometry. The left panel shows again that lognormal likelihoods are inconsistent with the

consumption-saving example in Section 3. Because the best response function depends on a single

moment, a one-parameter family should be sufficient for learning. To this end, we take a subset of

M by fixing σ2 = σ2KL so that the entertained set of lognormal distributions can be indexed by µ.

The left panel of Figure 2 demonstrates how the DKL- and DU-minimizing lognormal distributions

differ from each other.22 Since the entertained set does not depend on preferences, DKL remains

unchanged as γ varies.

The middle and right panels of Figure 2 depict cases when the agent entertains our recommended set

Mγ parametrized by θ for different levels of risk aversion. Evidently, KL-divergence now depends

on γ reflecting the fact that we chose Mγ so that DKL is focused on the risk-adjusted expected

return. As a result, the DKL- and DU -minimizing distributions coincide irrespective of γ (or P ).

Nevertheless, the set Mγ is still misspecified—as can be seen from DKL not taking the value zero

over Mγ .

Discussion

We have considered the asymptotic welfare implications of misspecification in the context of

Bayesian learning. We have argued that in a wide class of decision problems the DM can avoid the

harm from misspecification by tailoring her entertained likelihoods to her preferences. In the intro-

duction we started out by considering the DM treating her likelihoods as instruments to implement

well-performing policies, where the performance is judged against an unknown DGP. In light of

Proposition 1 a successful recipe for learning might take the following form. Instead of defining

beliefs over the state space of all potential i.i.d. distributions over gross returns, the Bayesian DM

22The left panel of Figure 2 can be viewed as a horizontal slice of value σ2 = σ2
KL in the right panel of Figure 1.
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should define her beliefs over the state space of equivalent distributions where equivalence is defined

relative to the implied best-responding policies. In case the DM’s preferences are described by her

relative risk aversion parameter γ, these equivalent distributions are defined by having the identical

moment E
[
X1−γ]. When the best-responding policies depend on finitely many such moments, the

exponential family provides an immediate way to define a set of likelihoods that is misspecification-

proof. Importantly, we do not require the Bayesian DM to believe that the true DGP lies in the

defined exponential family, only that she is able to define her beliefs over the set of distributions

with identical welfare-relevant moments. In this way, Bayesian learning can combine prior informa-

tion, while still entertain likelihoods that are only instrumental in implementing well-performing

policies.

5 Concluding remarks

This paper shows that in a setting in which misspecification is a major concern, Bayesian learning

with arbitrary likelihoods can lead to outcomes that appear irrational from an objective point

of view. Importantly, we do not mean this as a critique of Bayesian decision making. Instead,

our result is meant to shed light on the advantages of viewing the decision maker’s likelihoods as

instruments rather than part of her preferences. In a truly unknown environment, entertaining a

set that is inconsistent with the agent’s payoff function is “irrational” in the sense that the decision

maker would feel regret and change her mind if she were told the potential consequences of her

behavior.23 That said, it seems sensible to impose consistency among beliefs and preferences even

if learning is correctly specified.

An important advantage of our approach is that adopting the proposed misspecification-proof

model, and thereby ensuring no asymptotic bias in the implemented policy,24 does not necessarily

lead to increased finite sample variance. In fact, in the example of Section 3, a natural alterna-

tive to our recommended exponential family would be to use a nonparametric kernel estimator.

Nevertheless, this kernel density estimator would exhibit the error decay rate of O
(
n−4/5

)
, while

23This definition of irrationality is motivated by Gilboa and Schmeidler (2001) and Gilboa (2009).
24Note that bias in the space of implemented policies and bias in the space of data generating processes differ.
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our recommended exponential family—built from payoff-relevant statistics—converges at the faster

rate of O
(
n−1

)
. Other parametric families would have the same O

(
n−1

)
error rate, but as demon-

strated by our example they run the risk of targeting welfare-irrelevant statistics and hence inducing

suboptimal policies.

Our results do not hinge on the decision maker being fully Bayesian. As we have seen, initialized

with the recommended misspecification-proof set of likelihoods, Bayesian updating, frequentist

MLE, and moment-based learning all lead to implementing the same policy. In a similar vein, it

is not necessary that the decision maker chooses her policies in a Bayesian manner. For instance,

provided that ambiguity vanishes (as in Marinacci (2002)) a max-min decision rule collapses to

expected utility maximization under the limit point of learning.
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A Exponential families and misspecification-proofness

Proposition 1 follows from well-known properties of exponential families. For an excellent exposition

see Shao (2003). For completeness we spell out the arguments below.

Consider the exponential family defined in Proposition 1 given in its natural parametrization.

Under the regularity conditions mentioned before (Shalizi, 2009) Bayesian learning concentrates on

the likelihood minimizing the KL-divergence relative to the DGP.

DKL (P ∥ Qθ) =
∫

log
p(x)

qθ(x)
dP (x)

= −
∫

log hu(x) + θ · Tu(x)−Au(θ)dP (x) (17)

The log partition or cumulant function Au(θ) ensure that the likelihoods qθ are properly normalized.

It is defined as,

Au(θ) := log

∫
hu(x) exp{θ · Tu(x)}dx. (18)

Taking the derivative of the cumulant we obtain,

∇Au(θ) =
∫
hu(x) exp{θ · Tu(x)}Tu(x)dx∫
hu(x) exp{θ · Tu(x)}dx

=

∫
hu(x) exp{θ · Tu(x)−Au(θ)}Tu(x)dx = EQθ [Tu(X)] . (19)

Hence, the first-order condition characterizing the KL-divergence minimizing likelihood implies,

EP [Tu(X)]− EQθ [Tu(X)] = 0. (20)

That is, Bayesian learning concentrates on the likelihood which matches the payoff-relevant mo-

ments under the true DGP.
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