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Abstract

We consider likelihood-based learning when the learner’s entertained set of likelihoods is misspec-

ified. We focus on the welfare implications of misspecified sets through the limit point of learning

and the associated best-responding policy. Building on the best-responding policies, we define con-

sistency requirements for sets of likelihoods that a utility-maximizing agent would find desirable.

We characterize a class of decision problems for which one can construct exponential families of

likelihoods—using derived payoff-relevant moments as sufficient statistics—that satisfy our consis-

tency requirements therefore guaranteeing the implementation of optimal policies irrespective of

the data generating process.

JEL classification: C51, D83

Keywords: Learning; Misspecified models; Statistical Decision Theory

*We thank Timothy Christensen, Toru Kitagawa, Jonathan Payne, and Thomas Sargent for insightful discussions.
�QuantCo Inc., E-mail: csaba.daniel@gmail.com.
�Corresponding author. Department of Economics, New York University, E-mail: balint.szoke@nyu.edu.



1 Introduction

Economists build simple models that are at best crude approximations of the complex environment

they wish to describe. Part of the reason for this strategy is that learning the true data generating

process (DGP) is often a hopeless endeavor. Nonetheless, it is not obvious that the approach of using

carefully chosen misspecified models is necessarily flawed. Often, the primary goal of learning is to

uncover features of the environment that are key to making good decisions as opposed to learning the

entire DGP. Intuitively, these features should be our main guides when building our models.

To investigate this problem we consider a decision maker (DM) learning about the distribution P of

an exogenous stochastic process with the aim of uncovering features of the DGP that are instrumental

for her decision problem. While we adopt a Bayesian framework for simplicity our results apply to

other likelihood based methods as well. Bayesian learning entails specifying a parametric family of

likelihoods, M, accompanied with a (strictly positive) prior distribution that gets updated according

to Bayes’ rule as new observations from P arrive. This updating process induces a sequence of posterior

distributions overM that, under well-known regularity conditions, will asymptotically concentrate on

the likelihood QKL
M,P ∈ M that minimizes the Kullback-Leibler divergence from P . Bayesian decision

making entails choosing a sequence of policies defined as best response functions with respect to

elements of the sequence of posteriors, using the DM’s preference as a benchmark to what “best”

means. The limit point aM,P of this sequence of policies is the best response with respect to QKL
M,P .

This paper investigates how the set of entertained likelihoods, M, can influence the DM’s welfare

through its impact on the pair of limit points (QKL
M,P , aM,P ) when it cannot be guaranteed that

P ∈M, that is, that M is correctly specified.

We define two properties ofM that provide uniform performance guarantees with respect to a class P
of potential data generating processes.1 The key building block of our definitions is a preference-based

performance measure of likelihoods: the long-run average payoff of likelihood Q ∈ P is defined as

the expected utility under P induced by a policy that is a best response with respect to Q.2 We use

this measure to define an undominatedness property of M, that we call misspecification-proofness,

requiring that, irrespective of which P ∈ P generates the data, there is no other set of likelihoods that

would asymptotically lead to a likelihood with higher long-run average payoff. This is a demanding

property that captures one of the most desirable features of correctly specified sets of likelihoods. We

also introduce a weaker performance property of M, that we call local payoff-optimality, requiring

that, irrespective of which P ∈ P generates the data, the likelihood that the M-implied posteriors

asymptotically concentrate on leads to the highest long-run average payoff within M. Recognizing

that the actual data generating process is unknown, we argue that our P -independent properties are

reasonably required from any set of likelihoods that the DM entertains.3

1This class can be large. So large that the convergence of posteriors cannot be guaranteed ifM = P (see e.g. Diaconis
and Freedman [1986]). An illustrative example that we use throughout the paper is the class of i.i.d. distributions.

2This is meant to capture the idea that learning matters only indirectly, through implementing a given policy.
3Similar to the notion of admissibility, the strength of our properties is to help abandoning undesirable strategies.
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We show that arbitrary sets of likelihoods do not satisfy either of our properties under Bayesian

learning. This means that a misspecified set M can cause the learner to implement a policy function

that appears suboptimal even relative to the entertained set, thereby violating local payoff-optimality.

The source of this suboptimality is the misalignment of two implicit loss functions pertinent to Bayesian

decision making: one for learning (KL-divergence), and one for decision making (utility function).

Intuitively, once a set of likelihoods is specified, its elements tell Bayes’ rule what statistical moments

of P it should focus on. If that set of moments is different from the payoff-relevant moments that

determine the DM’s policy function, learning can focus on “wrong” features of the environment.

Clearly, under correct specification the misalignment of loss functions is inconsequential, but it can be

of first order importance when misspecification is present.

We demonstrate these concepts through a standard consumption-saving problem. After diagnosing

the source of suboptimality, we identify a class of decision problems, for which we can construct sets

of likelihoods that are both misspecification-proof and locally-payoff-optimal. The key idea is to tailor

the misspecified set to preferences. In particular, we recommend constructing an exponential family

of likelihoods by using the DM’s vector of payoff-relevant moments as sufficient statistics. These

moments are derived from the underlying decision problem and thus are determined by preferences.

By using our exponential family of likelihoods, the decision maker ensures that she learns about the

“right” features of the data generating process.

We deviate from the subjectivist Bayesian view by assuming that the DM treats her likelihoods as

instruments for choosing good policies, rather than as indisputable parts of preferences that provide

psychological value by themselves. Such an assumption is necessary for any reasonable form of assess-

ment of models that are misspecified. If we were to take the subjectivist view, the DM would always

do her best according to the wrong model her decisions are based on. In order to avoid the conclusion

of this circular argument, we follow Blume et al. [2018] and take the perspective of an outside observer

that allows us to compare potentially misspecified priors based on their asymptotic implications.

Our proposed properties ofM are meant to capture these asymptotic implications without considering

the transition. Therefore, assuming that the standard regularity conditions are satisfied, they are

restricted to the support of the prior ignoring the specific weighting. As such, while we use Bayesian

terminology throughout the paper, our findings are applicable to any converging learning rule such

that the entertained hypotheses are representable with probability distributions over the observables

and such that the likelihood of each hypothesis is assessed in light of the data.4

Our results illustrate that the set of likelihoods that the decision maker entertains should be tailored

to the DM’s objective as opposed to the environment. Even if the data generating process is highly

complex in the statistical sense, there are decision problems for which a simple misspecified set can

implement the optimal policy if it is targeted at the appropriate features of the environment. Our

4This includes both Bayesian learning and anticipated utility learning (see Kreps [1998]) accompanied with some
frequentist procedures (e.g. MLE). On the other hand, we do not consider active learning. That is, we assume that the
implemented policy function does not affect the information that the DM observes or the probability distribution that
she wants to learn about.
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results can thus be viewed as a recipe for model building.

1.1 Related Literature

Two key features of our analysis are: (i) we take an outside observer’s perspective by considering

standard Bayesian decision making but assessing the set of likelihoods entertained by the DM according

to their long-run implications under some “objective reality”, and (ii) we allow the set of likelihoods

(prior support) to be misspecified.

While Bayesian learning occupies a prominent place in the economics literature, most papers focus

on the case of correct specification. In their classic paper, Bray and Kreps [1987] argue that this

benchmark is too “sterile” and call for models that “have in place some level of inconsistency with

reality”. Important examples of such models are Nyarko [1991] and Fudenberg et al. [2017].5 Similar

to us, these papers analyze Bayesian learning under the assumption that the decision maker’s prior is

misspecified. Nevertheless, instead of assessing the usefulness of these priors as we do, these papers

focus on the non-trivial dynamics of beliefs that may arise when learning is active.

The econometrics and statistics literature paid relatively more attention to the idea of misspecification.

In his seminal paper, Berk [1966] showed that Bayesian learning about a parameter from a series of

exchangeable signals asymptotically concentrates on the parameter values for which the KL-divergence

of the DGP with respect to the entertained likelihoods is minimal. More recently, Shalizi [2009] arrives

at the same conclusion in a much more general setting. Following the frequentist tradition, White

[1996] provides a thorough analysis of maximum-likelihood techniques when the model is misspeci-

fied.6 In this case, the KL-divergence minimizing parameter, θKL, is typically called the pseudo-true

parameter. By studying large sample properties of Bayesian inference about θKL, Müller [2013] shows

that one can reduce the Bayes estimator’s expected loss (under the DGP) by replacing the original

posterior with an artificial normal posterior centered at θKL with the sandwich covariance matrix.

Although similar, our approach is different in the sense that our decision maker is not interested in P

or θKL per se. Statistical closeness is important for her only to the extent that it helps to make better

decisions.

As for point (i), an example is Blume et al. [2018] who use an objective welfare criterion—similar in

spirit to ours—to rank alternative market structures in the presence of belief heterogeneity (without

learning). In addition, measuring the implications of learning relative to the DGP is of a similar

flavor to the question of survival in financial markets analyzed by Blume and Easley [2006]. We

illustrate that a learner’s value function can carry invaluable information about the relative usefulness

of different likelihoods when the prior is misspecified. This echoes the literature on max-min expected

utility that breaks a key feature of Bayesian decision making: the separation of inference and control.7

This literature—in contrast to the Bayesian decision rule we use—alters the manner in which optimal

5See also Esponda and Pouzo [2016].
6Ideas similar to the justification that we give in section 4 can be spotted in various chapters of White [1996].
7In the Bayesian model, optimal inference about P is independent of u. See Hansen and Sargent [2018].
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policies are chosen: instead of trying to maximize expected utility under a single distribution, a max-

min decision maker seeks policies that work well (not necessarily optimally) under a whole set of

reasonable distributions. Attempts to marry such behavior with learning can be found in Hansen and

Sargent [2007], Klibanoff et al. [2009], and Epstein and Schneider [2007].

The observation that misaligned loss functions—one for estimation, and one for evaluation—can lead

to undesirable outcomes under misspecification has long been recognized in the forecasting literature.

In particular, Granger and Newbold [1973] argued that if misspecification is a serious concern and

one believes that a particular loss function (e.g. mean squared error) should be used to evaluate

forecasts, then the same loss function should also be used to estimate the model parameters.8 Our

recommendation in section 4 is similar in spirit and can be viewed as a generalization and a tractable

operationalization of this idea.

Our recommendation also resembles the idea of Gibbs posteriors advocated by Jiang and Tanner [2008]

and Bissiri et al. [2016]. Instead of trying to model the DGP directly, this approach starts with some

statistics of interest, θ, accompanied with a corresponding loss function, `(θ, x), such that θ minimizes

the expected `(θ, x) under the DGP. It then proposes to use exp (−`(θ, x)) as a quasi-likelihood for

Bayesian inference. In our case, the statistics θ can be viewed as our vector of payoff-relevant moments.

In this sense, the main difference relative to our analysis is that we do not take these moments as given

but derive them from primitives (preferences and market structure) of an economic decision problem.

Similar comments apply to the so called focused information criterion developed by Claeskens and

Hjort [2003]. It is a model selection tool that evaluates candidate models based on their ability to

efficiently estimate a particular parameter of interest, instead of comparing their overall fit.

The rest of the paper is structured as follows. Section 2 introduces key concepts and notation. In

section 3, we demonstrate how misspecification can lead to suboptimal long-run behavior through an

example. Section 4 presents our recommendation that can be used to resolve this suboptimality in

certain cases. Section 5 concludes.

2 General framework and notation

The environment is described by a probability space (Ω,F , P ) such that a strictly stationary and

ergodic observable state vector X takes values in the measurable space (X ,Ξ) with distribution P .

Alternative descriptions of the environment can be obtained by replacing P with some other strictly

stationary and ergodic distribution. Loosely, we use P to denote the set of distributions over X that

the DM deems to be plausible for the specific problem at hand.

The decision maker chooses a policy function, a : X → C, that assigns a particular action from some

choice set C to every realization x of the state vectorX. LetA denote the collection of all possible policy

functions. Payoffs are described by the period utility function, u : C × X → R, and possibly depend

8See also the loss-function based proposals of Schorfheide [2001] and Geweke and Amisano [2012].
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on the state. To describe the decision maker’s objective, we introduce a functional, U : A × P → R,

defined as,

U(a,Q) :=

∫
X
u(a(x), x)dQ(x). (1)

U defines the expected payoff induced by a policy function a ∈ A under a distribution Q ∈ P. Ideally,

the decision maker would want to implement a policy function a∗ that maximizes the expected payoff

under P ,

a∗ ∈ arg max
a∈A

U(a, P ). (2)

Since we assume that the environment is strictly stationary and ergodic, U(·, P ) is equal to the average

payoff that the decision maker realizes in the long-run. To distinguish this notion from expected payoff

under arbitrary Q ∈ P, we will henceforth call U(·, P ) the decision maker’s long-run average payoff.

However, P is unknown, so the decision maker has to solve an alternative problem having objective

U(·, Q) in which P is replaced by some approximating distribution Q. To this end, she entertains a

set of likelihoods M, i.e., a family of strictly stationary and ergodic probability distributions Qθ ∈ P,

each indexed by a finite parameter vector θ,

M := {Qθ : θ ∈ Θ} , where Θ ⊆ Rp. (3)

We are interested in situations in which there is no guarantee that M is correctly specified, i.e., that

P ∈M. We call the set M misspecified if P /∈M.

Initialized with some prior distribution over M, Bayes’ rule induces a sequence of posteriors that

summarize the decision maker’s best guesses for P at every point in time after the available data is

taken into account. It is well known that under certain regularity conditions [Shalizi, 2009] the sequence

of posteriors will eventually concentrate on the likelihoods in M that minimize the Kullback-Leibler

(KL) divergence from the data generating process,9

QKL
M,P := arg min

θ∈Θ
DKL (P ‖ Qθ) . (4)

In other words, after observing an infinite sequence of signals, Bayes’ rule will suggest using a dis-

tribution from QKL
M,P as the best approximation of P . For ease of notation we consider situations in

which the set defined in (4) is a singleton and denote the single KL divergence minimizer as QKL
M,P .

Our results can be readily extended to the general case by considering all elements of QKL
M,P . The

KL-divergence minimizing likelihood has interesting information theoretic interpretations, but it is

not obvious what its properties are in terms of long-run average payoff: the quantity that the decision

maker ultimately cares about.

In order to investigate the payoff-relevant properties we define a performance measure of different

9The KL divergence is DKL(P ‖ Q) =
∫

log p(x)
q(x)

dP (x) =
∫

log p(x)dP (x)−
∫

log q(x)dP (x).
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likelihoods in terms of the long-run average payoff of the policy function they induce. Correspondingly,

a crucial component of this object is the best response function b : P → A, defined as10,11

b(Q) ∈ arg max
a∈A

U(a,Q). (5)

Our performance measure of likelihood Q combines b with the expected payoff function under P :

U (b(Q), P ) . (6)

This gives the realized long-run average payoff induced by an arbitrary likelihood Q. By using P to

evaluate the performance of Q, we effectively take the perspective of an outside observer and intend

to capture the idea that learning influences the decision maker’s welfare only indirectly through its

induced policy functions.12 While we find it instructive, this notion suffers from the fact that it hinges

on the unknown data generating process. Nevertheless, it can be used to construct a P -independent

property of M.

Definition 1 (Misspecification-proof M).

Consider a decision problem characterized by the triplet (P,A, u). The family of likelihoods M ⊆ P
is misspecification-proof with respect to (P,A, u), if there exists no M′ ⊆ P, such that

U
(
b
(
QKL
M′,P

)
, P
)
≥ U

(
b
(
QKL
M,P

)
, P
)

∀P ∈ P,

with strict inequality for some P ∈ P.

Definition 1 describes an asymptotic performance property of a family of likelihoods M relative to a

specific decision problem. Being misspecification-proof guarantees that there is no other (potentially

misspecified) set of likelihoods that provides uniformly better asymptotic performance over the entire

set P of potential data generating processes.13 Intuitively, a decision maker with an objective (2),

fearing misspecification, would find this property desirable.

However, misspecification-proofness is an admittedly demanding property, as it is defined globally in

relation to all families of likelihoods. A related, but significantly weaker, performance property can

be defined in a local manner, that is, conditionally on the set M:14

Definition 2 (Locally-payoff-optimal M).

Consider a decision problem characterized by the triplet (P,A, u). The family of likelihoods M ⊆ P

10Considering only learning rules that converge to a single likelihood asymptotically, we can determine the best-
responding functions without having to consider mixture distributions.

11While potentially there could be a set of best-responding policy functions, for ease of exposition, we assume that
the best-responding policy function is unique. Our results can be readily extended to the set-valued case.

12The standard Bayesian approach would use U (b(Q), Q) to evaluate the implications of Q.
13The concept is akin to undominatedness in game theory. In our context, the decision maker choosing among sets of

likelihoods M plays against Nature whose action space is the set P of potential data generating processes.
14This property is related to the loss-function-based consistency notion typically used in the statistical learning theory

literature (see Vapnik [1995]).
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is locally-payoff-optimal with respect to (P,A, u), if for all P ∈ P, there exists no Q′ ∈M, such that,

U
(
b
(
Q′
)
, P
)
> U

(
b
(
QKL
M,P

)
, P
)
.

Local payoff-optimality requires that the likelihood QKL
M,P , that the Bayesian posterior asymptotically

concentrates on, generates the highest long-run average payoff within the set M. In this sense, if there

is no other likelihood within the entertained set M with a higher long-run average payoff, Bayesian

learning is successful in maximizing the unknown objective (2) at least over the entertained set M.

While there are many trivial sets of likelihoods that are locally payoff-optimal—such as any singleton—

not satisfying this property is symptomatic of a deeper issue which underlies the violation of misspe-

cification-proofness. This issue is the incompatibility of two loss functions relevant to the decision

problem at hand: one governing the decision maker’s learning, and the other governing her decisions.

To shed light on the source of this problem, we construct a preference-based similarity measure and

contrast it with the analogous KL-divergence DKL, that captures statistical similarity. In particular,

by normalizing U (b(Q), P ) we define DU : P × P → R+ as

DU(P ‖ Q) := U (b(P ), P )− U (b(Q), P ) . (7)

For completeness, we denote the likelihoods that yield the highest long-run average payoff in M by

QU
M,P := arg min

θ∈Θ
DU (P ‖ Qθ) . (8)

We can use this set to rephrase local payoff-optimality of M as QKL
M,P ⊆ QU

M,P for all P ∈ P.

For fixed P , both DKL and DU attain their global minima (zero) at Q = P . Nevertheless, as opposed

to DKL, DU is not a divergence, because it can also take zero values at Q 6= P .15 This suggests that

in principle the two measures DKL and DU can induce quite different level curves over the space of

likelihoods. In the following sections we further explore the implications of this difference.

In particular, using the two performance properties introduced in Definition 1 and 2, section 3 presents

an example that demonstrates that under Bayesian learning an arbitrary set of likelihoods fails to

satisfy both local payoff-optimality and misspecification-proofness. While a priori our properties might

appear so strong that only correctly specified families of likelihoods could satisfy them, in section 4

we characterize a class of decision problems for which it is possible (and straightforward) to construct

a set M with P /∈M that are both misspecification-proof and locally-payoff-optimal.

15In fact, this property is a key feature of our example in section 3. Moreover, we will provide conditions under which
certain likelihoods Q and the data generating process P can share all “payoff-relevant” moments (DU(P ‖ Q) = 0), but
otherwise differ in terms of their “statistical” moments (DKL(P ‖ Q) 6= 0 and so Q 6= P ).

8



3 Illustrative example

The following example illustrates that arbitrary sets of likelihoods coupled with Bayes learning might

fail to satisfy both local payoff-optimality and misspecification-proofness. Consider a consumption-

saving problem with a risk-averse agent whose preferences are recursive of the Epstein and Zin [1989]

type. Let γ > 0 be a coefficient of relative risk aversion for atemporal wealth gambles, ψ > 0 be a

parameter that governs attitude toward substituting goods over time, and β be the agent’s discount

factor. At the beginning of every period, she observes realization x of the stochastic gross return X

on her financial wealth. Suppose that the reference set P includes distributions asserting that every

period X is drawn i.i.d. from some unknown distribution P ∈ P.

The best response function is obtained by solving the Bellman equation for any distribution Q ∈ P,

V (w) = sup
c

(1− β)
c1−ψ

1− ψ + βEQ
[
V (w′)

1−γ
1−ψ
] 1−ψ

1−γ
(9)

s.t. w′ = x(w − c), (10)

where V is the agent’s value function, c denotes her consumption, and w′ is her financial wealth after

realizing next period return x. For a given Q, the above functional equation can be solved for the

optimal consumption policy by using standard recursive techniques:16

b(Q) = w

[
1−

(
βEQ

[
X1−γ] 1−ψ1−γ

) 1
ψ

]
. (11)

The specific distribution Q affects the best action only through the implied risk-adjusted expected

return m(Q) := EQ
[
X1−γ]; a particular “perceived moment” of the interest rate process. The fact

that we are able to summarize relevant features of the interest rate process with finite moments, m,

permits an intuitive characterization of our preference-based measure, DU, expressing the reduction

in long-run average payoff owing to using Q instead of P .

Lemma 1. If two distributions Q, Q′ are such that m(Q) = m(Q′), they induce the same policy

functions so that b(Q) = b(Q′) and DU (P ‖ Q) = DU (P ‖ Q′).

As for the entertained set of likelihoods, assume that the agent uses likelihoods that describe X as

being i.i.d. lognormal parameterized by θ =
(
µ, σ2

)
denoted by M. Lemma 1 implies that if there is

a Qθ ∈ M such that m(Qθ) = m(P ), then the agent is able to implement the action that is the best

response with respect to P , i.e., DU(P ‖ Qθ) = 0, even if all of her likelihoods are wrong. In fact,

there are many lognormal distributions with this property.

In principle, the payoff-relevant moment EP [X1−γ ] becomes known asymptotically irrespective of which

P ∈ P generates the data. This does not mean, however, that this is the moment that Bayes’ law

16Interior solutions require βEQ
[
X1−γ] 1−ψ

1−γ < 1, which is a natural restriction on the discounted risk-adjusted return.
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Figure 1: Left: Densities of the data generating process along with best approximations within M
according to DKL and DU. Dashed lines show lognormal densities that imply risk-adjusted expected
return of EP [X1−γ ]. Right: Indifference curves over M according to DKL and DU. The dot θKL :=(
µKL, σ

2
KL

)
denotes the KL-divergence minimizing lognormal distribution. The dashed line represents

distributions Q with DU(P ‖ Q) = 0.

focuses on to find the likelihood in M that minimizes the KL-divergence from P . In fact, asymptot-

ically Bayes learning is converging to θ minimizing EP [− log qθ], where qθ denotes the density of Qθ

with respect to the Lebesgue measure. Given that the entertained likelihoods in M are lognormals

the minimizer matches the first- and second moments of the log-transformed state variable.

One can immediately see a misalignment: while a key component of the agent’s policy function is

the risk-adjusted expected return, Bayesian learning with lognormal likelihoods aims to match the

mean and variance of logX. An immediate consequence of this misalignment is that M is neither

locally-payoff-optimal, nor misspecifiction-proof.

Although the specific P is irrelevant for this conclusion, further insight can be gained by looking at a

particular example with P /∈M. Suppose that P is such that logX is distributed as a two-component

mixture normal distribution.

The left panel of Figure 1 depicts the density of the assumed data generating process (black solid line)

with a long left tail capturing rare but disastrous return realizations. The other densities represent

lognormal densities that are closest to this data generating process according to DKL and DU. While

the blue dash-dotted distribution, used by the decision maker, matches statistical aspects of the black

solid line better, the green dashed densities induce higher long-run average payoff, because they are

associated with the same risk-adjusted expected return as the black distribution P .

To shed more light on the suboptimality of a lognormal M, the right panel of Figure 1 depicts two

sets of level curves corresponding to the projections of DKL and DU on M, respectively. Lognormal
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distributions on the ellipses have equal KL-divergence relative to P , while the blue straight lines show

distributions with equal long-run average payoff. Clearly, the two sets of level curves exhibit strikingly

different geometries. This difference emerges from the properties of DKL and DU. While the level

curves of DU are influenced by the preference parameter γ, the iso-entropies of DKL depend primarily

on the set M.

4 Misspecification-proof learning

The central message of our example is that if the statistical and payoff-relevant aspects of M are not

aligned, learning with misspecified likelihoods can lead to suboptimal policies. The problem with an

arbitrary set M is that KL-divergence might match features of the environment that are irrelevant

to the optimal policy function, a∗. We show now that this outcome is not inevitable: under certain

conditions, constructing sets of likelihoods that are both misspecification-proof and locally-payoff-

optimal is feasible. As we saw before, Bayes rule designates KL-divergence as an implicit loss function

for learning. While taking this loss function as given, we can choose M so that DKL focuses on

payoff-relevant features of the environment. This insight can be generalized and serve as a guideline

for specifying M in situations in which misspecification is an issue.

Assumption 1 (Moment-dependent policy function).

For a given utility function, u, suppose that the optimal policy function (relative to P) can be expressed

as a function of finitely many moments of the data generating process. That is, there exist functions

Tu : X → Rd, and gu : Rd → A, such that for any Q ∈ P the best-responding policy is defined as,

b(Q) = gu

(
m(Q;Tu)

)
, (12)

with m(Q;Tu) := EQ [Tu(X)] representing the vector of payoff-relevant moments.

Decision problems that satisfy Assumption 1 possess two salient features. One concerns the interaction

between the decision maker and her environment and it implicitly requires that the DM’s actions do

not affect the data generating process itself. This property excludes active learning or bandit problems.

The other feature concerns the statistical complexity of the decision problem and it requires a degree

of simplicity in terms of welfare-relevant characteristics of the DGP. This simple class nonetheless

includes a large class of decision problems. For example, every non-active learning problems with a

finite policy space satisfies Assumption 1.17 Moreover, as seen by the example in section 3, there are

various decision problems with an infinite policy space that are “simple enough” to satisfy Assumption

17Enumerating policies as A = {a1, . . . , aN} we can define the payoff-relevant statistics as,

Tu(x) =

 u(a1(x), x)− u(a2(x), x)
...

u(aN−1(x), x)− u(aN (x), x)

 ∈ RN−1. (13)
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1. In that case, Assumption 1 requires limited interaction between implementable policies and the

state vector. Any decision problem characterized by a differentiable utility function that can be written

in the form u(a(x), x) = 〈f(a), Tu(x)〉 for some function f(a) ∈ Rd also satisfies Assumption 1. This

class includes quadratic utility functions, isoelastic utility functions, and many others.

The next proposition states that for learning problems that satisfy Assumption 1 one can construct sets

of likelihoods that are both misspecification-proof and locally-payoff-optimal. In this sense concerns

about misspecification should largely depend on the utility function characterizing the decision problem

as opposed to the potential complexity of the data generating process.

Proposition 1.

Under Assumption 1, the exponential family of likelihoods defined by the finite sufficient statistics Tu,18

M =
{
qθ(x) = hu(x) exp {θ · Tu(x)−Au(θ)} : θ ∈ Θ ⊆ Rd

}
, (14)

for some hu : X → R+, where Au(θ) is the cumulant function, is both misspecification-proof and

locally-payoff-optimal.

Proposition 1 follows from the tractable relationship between exponential families and their finite

sufficient statistics.19 The KL-divergence minimizing distribution within M is characterized by,

EQKL
M,P

[Tu(X)] = EP [Tu(X)], (15)

so that likelihood-based learning coincides with the method of moments in the sense that the KL-

divergence minimizing likelihood exactly matches the payoff-relevant moments of the data generating

process. In the limit the decision maker implements the policy function b
(
QKL
M,P

)
, which—following

the logic in Lemma 1—leads to the same long-run average payoff as a∗ = b (P ).

The moral of Proposition 1 is as follows. Even if the environment described by the underlying DGP

is complex in the statistical sense—i.e. infinite dimensional—the relevant complexity of the learner’s

problem is defined through her objective and reflects the properties of u. If the purpose of learning

is to aide decisions, the learner should select her likelihoods Q ∈ M based on their ability to capture

features of the environment that matter for good decisions. In this sense, we treat the DM’s set M
as an instrument for making decisions rather than an indisputable part of preferences. Given that the

environment’s statistical complexity can seriously limit the ability to learn, we advocate calibrating

M not to the intricacies of the “true” environment but to features pertinent to making good decisions.

In this sense our result can also be viewed as a recommendation for constructing the relevant state

space in a given decision problem. As in our example, considering the whole set P as the state

space would necessitate the use of non-parametric models. However, this turns out to be unnecessary

if one can partition P into parsimonious equivalence classes by means of the inverse-image of the

18For ease of notation we define the exponential family through density functions. qθ is the density of Qθ with respect
to the Lebesgue measure. We use the canonical parametrization.

19See any standard reference on mathematical statistics, e.g. Shao [2003].
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Figure 2: Similarity measures DKL and DU overM. Vertical dotted lines represent the KL-divergence
minimizing parameters. Left panel shows the case when M includes lognormal distributions with
fixed σ2 = σ2

KL so that the set is indexed only by µ. Middle and right panels depict cases when the
recommended set Mγ in (16) is used with different degrees of risk aversion.

best response function.20 In this scenario, states can be defined through moments of payoff-relevant

statistics much like in the case of method of moments approaches.

Example revisited

To see how to apply the introduced concepts, we revisit the consumption-saving problem of section

3. Recall that we identified the risk-adjusted expected return as the only payoff-relevant moment of

X, therefore, Assumption 1 is satisfied and misspecification-proof learning is feasible. The sufficient

statistic can be written as

Tu(x) := x1−γ ⇒ m(Q;Tu) = EQ [Tu(X)] .

Moreover, using standard integration by substitution logic,21 it is straightforward to show that

Au(θ) := − log (θ(1− γ)) and hu(x) := x−γ .

Therefore, our recommended set of (misspecified) likelihoods is,

Mγ :=
{
qθ(x) = x−γ exp

{
θ · x1−γ + log(θ(1− γ))

}
: θ < 0, x > 0

}
, (16)

where the γ-index emphasizes the prior support’s dependence on the decision maker’s risk aversion.

Figure 2 illustrates howMγ renders the implied information geometry aligned with the utility geome-

try. The left panel shows again that lognormal likelihoods are inconsistent with the consumption-saving

example in Section 3. Because the best response function depends on a single moment, a one-parameter

20Using the introduced notation the state space is defined as
{
b−1(a) ⊂ P : a ∈ A

}
.

21For simplicity, we assume γ > 1, so that θ < 0 is required for qθ to be a probability density function.
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family should be sufficient for learning. To this end, we take a subset of M by fixing σ2 = σ2
KL so

that the entertained set of lognormal distributions can be indexed by µ. The left panel of Figure

2 demonstrates how the DKL- and DU-minimizing lognormal distributions differ from each other.22

Since the entertained set does not depend on preferences, DKL remains unchanged as γ varies.

The middle and right panels of Figure 2 depict cases when the agent entertains our recommended set

Mγ parametrized by θ for different levels of risk aversion. Evidently, KL-divergence now depends on

γ reflecting the fact that we chose Mγ so that DKL is focused on the risk-adjusted expected return.

As a result, the DKL- and DU -minimizing distributions coincide irrespective of γ (or P ). Nevertheless,

the set Mγ is still misspecified—as can be seen from DKL not taking the value zero over Mγ .

5 Concluding remarks

This paper shows that in a setting in which misspecification is a major concern, Bayesian learning

with arbitrary likelihoods can lead to outcomes that appear irrational from an objective point of view.

Importantly, we do not mean this as a critique of Bayesian decision making. Instead, our result is

meant to shed light on the advantages of viewing the decision maker’s likelihoods as instruments rather

than part of her preferences. In a truly unknown environment, entertaining a set that is inconsistent

with the agent’s payoff function is “irrational” in the sense that the decision maker would feel regret

and change her mind if she were told the potential consequences of her behavior.23 That said, it seems

sensible to impose consistency among beliefs and preferences even if learning is correctly specified.

An important advantage of our approach is that adopting the proposed misspecification-proof model,

and thereby ensuring no asymptotic bias in the implemented policy,24 does not necessarily lead to

increased finite sample variance. In fact, in the example of section 3, a natural alternative to our

recommended exponential family would be to use a nonparametric kernel estimator. Nevertheless,

this kernel density estimator would exhibit the error decay rate of O
(
n−4/5

)
, while our recommended

exponential family—built from payoff-relevant statistics—converges at the faster rate of O
(
n−1

)
.

Other parametric families would have the same O
(
n−1

)
error rate, but as demonstrated by our

example they run the risk of targeting welfare-irrelevant statistics and hence inducing suboptimal

policies.

Our results do not hinge on the decision maker being fully Bayesian. As we have seen, initialized

with the recommended misspecification-proof set of likelihoods, Bayesian updating, frequentist MLE,

and moment-based learning all lead to implementing the same policy. In a similar vein, it is not

necessary that the decision maker chooses her policies in a Bayesian manner. For instance, provided

that ambiguity vanishes (as in Marinacci [2002]) a max-min decision rule collapses to expected utility

maximization under the limit point of learning.

22The left panel of Figure 2 can be viewed as a horizontal slice of value σ2 = σ2
KL in the right panel of Figure 1.

23This definition of irrationality is motivated by Gilboa and Schmeidler [2001] and Gilboa [2009].
24Note that bias in the space of implemented policies and bias in the space of data generating processes differ.
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